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ABSTRACT 

This report presents the results of an integrated study of structures, aerodynamics, and 

controls using the STARS program on two advanced airplane configurations, the Forward 

Swept Wing X-29A, and the Oblique Wing Research Aircraft. The results of various analyses 

performed for this project are compared to other verified results to illustrate the effectiveness 

of an integrated approach. 

The results presented for the X-29A include finite element modeling, free vibration 

analyses, unsteady aerodynamic calculations, flutter/divergence analyses, and an aeroservo- 

elastic controls analysis. The STARS analytical free vibration results and the results of the 

ground vibration survey performed at NASA are presented and compared for the symmetric 

and anti-symmetric cases of the X-29A. Good correlation is shown between the STARS' and 

the ground vibration survey's natural frequencies, as most differences were less than 8%. For 

example, the wing first bending mode for the symmetric case was analytically calculated at 

8.96 hz, a 4.1% difference of the 8.61 hz ground vibration test value. Subsonic generalized 

forces were then obtained by unsteady aerodynamic calculations using a doublet lattice 

method. Utilizing the STARS analytical generalized force, stiffness, and mass matrices, flutter 

and divergence analyses were performed for the symmetric and anti-symmetric cases of the X- 

29A. The flutter/divergence results are correlated and illustrated in V-g diagrams and root- 

locus plots for three solution techniques, the k-method, the p-k method, and a state-space 

method. The flutter solutions for the symmetric case correlate well for all three solution 

techniques. For example, all three methods predict the symmetric canard pitch mode to 

diverge: the k method at 913 kts, the p k  method at 920 kts, and the state-space method at 
918 kts. The solutions for the anti-symmetric case, however, show good correlation only for 

the k and state-space methods. The anti-symmetric canard pitch was predicted to diverge by 

all three methods, however, the p-k method was 49% higher than the k method, and 67% 

higher than the state-space method. Additional flutter analyses were performed on the X-29A 

to determine the effect, if any, of including the rigid body modes in the solutions. Results are 

graphed and presented for a select few modes of the anti-symmetric case. The latter analysis 

indicates that coupling occurred between the rigid body modes and the elastic modes, 

effecting the flutter and divergence characteristics. 

The aeroservoelastic controls analysis performed on the X-29A include open and closed 

loop responses using the analog reversion W e  of the longitudinal flight control system. 

The open loop analyses are performed to check the dynamic stability of the airplane, while the 
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primary purpose of the closed loop analyses is to determine if any adverse airframeicontrol 

coupling occurs. The STARS results, which utilize analytical mode shapes to account for the 

flexible effects, are presented and compared to results which utilize ground vibration mode 

shapes. The open bop analyses are performed including and excluding the notch filters. 

Without the notch filters in the analysis using the ground vibration mode shapes, the airplane 

does not meet the requirements of 'no gain crossovers at resonance frequencies and a gain 

margin of 6 dB past the first natural frequency,' as expected. The STARS results (using the 

analytical mode shapes), however, show that this requirement is met. Beyond this, the 

STARS and ground test results show good gain and phase margin correlation for all analyses. 

Additionally, the STARS analytical closed loop damping and frequency values showed 

very good correlation to the flight test results performed at NASA. 

The tasks performed on the Oblique Wing Research Aircraft include finite element 

modeling and free vibration analyses. The finite element model was generated by the 

conversion of a contractor's NASTRAN model to a STARS model. An unique attempt has 

been made to solve the OWRA free vibration problem by utilizing the detailed finite element 

model, thus circumventing the approximate dynamic reduction procedure. Extensive steps 

were taken to minimize the bandwidth of the problem since this involves the solution of a very 

large order eigenvalue problem. An attempt to renumber the nodes by hand showed that the 

STARS minimization technique was more efficient in minimizing the bandwidth due to the 

complexity of the wing and pivot. The STARS minimization technique arrived at a half- 

bandwidth of 648. The results of the finite element modeling, and a limited free vibration 

analysis are then presented. 
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1. INTRODUCTION 

1.1 Background 

The Vehicle Technology Branch of the Research Engineering Division at NASA's 

Ames-Dryden Flight Research Facility (DFRF) is primarily involved in the synthesis and flight 

testing of novel advanced aerospace vehicles, often in cooperation with such agencies as 

the U.S. Air Force, U.S. Navy, and Defense Advanced Research Project Agency (DARPA). 

Due to the increasing occurrence of aeroservoelastic (ASE) instabilities in such aircraft 

deve topment programs, the Division is also engaged in related research activities, including 

the development of tools to investigate performance characteristics, and most importarrily, 

to ensure the safety of these aircraft. The trend toward more ef f i in t ,  flexible structures 

and higher gain, control configured flight control systems is the basis for one such tool. 

This tool, STARS (STructures, Aerodynamics, and Related aeroservoelastic systems 

analysis), integrates the often separated areas of structures, aerodynamics, and controls, 
enabling analyses to be efficiently and effectively conducted, even on complex advanced 

aircraft. Thus, the need for advanced analytical tools is being met by NASA's research and 

development, which, in part, includes this project. Specifically, this project performs various 

analyses using the integrated STARS program on two advanced airplane configurations, 

the Forward Swept Wing (FSW) X-29A Airplane, and the Oblique Wing Research Aircraft 
(OWRA). The results of these analyses are then compared to other results. 

In the area of structural dynamics, it is vital to predict the flutter and divergence 

characteristics to ensure flight safety. Time consuming efforts, such as free vibration 

analyses and unsteady aerodynamic calculations must be performed prior to such 

predictions. This work is often followed by a complete aeroservoelastic (ASE) controls 

analysis, which further relates to the safe performance of the aircraft within the designed 

flight flutter envelope. In connection with the FSW X-29A, flqht testing is being conducted 

at NASA Ames Dryden Flight Research Facility, and exhaustive analyses have been 

performed to support the project. The results of these tests and analyses provide the 

opportunity to validate analytical techniques in various disciplines, is as done in this project. 

The asymmetrical configuration of the Oblique Wing Research Aircraft (OWRA) poses a 
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challenge to the analytical capabilities in existence. Special capabilities are evoking in order 

to handle this unusual situation, such as the development of a potential gradient 

aerodynamic code. The OWRA provides the opportunity to perfotm complex analyses 

using the STARS program. The tasks involved in the research of these two airplanes are 

outlined in Section 1.3, while the scope of this project is presented in Section 1.2. 

1.2 Project Objective 

Due to the trend towards more flexible and complex aircraft, an efficient analytical tool to 

quickly assess the performance characteristics and to verify the stability of such aircraft is 

necessary. The objective of this project is to use such a tool to perform integrated analyses 

of structures, aerodynamics, and controls. The results of these analyses are then to be 

correlated and compared to other existing verified results. This objective is achieved by 

using the STARS program to predict analytically the performance characteristics of the two 
advanced airplanes mentioned above, the FSW X-29A and the OWRA. The tasks 

associated with these analyses are described in detail in the next section. 

1.3 Project Overview 

Using the STARS program, various analyses were performed on the X-29A and the 

OWRA. Finite element modeling, free vibration analyses, unsteady aerodynamic 

calculations, flutter and divergence analyses, and an ASE controls analysis were all 

performed on the X-29A. Some of the earlier analyses presented in this project were 

performed prior to the start of this project by NASA STARS - Team engineers, however, the 

review of this material was required to continue further analyses. In connection with the 

OWRA, finite element modeling and free vibration analyses were performed. An attempt 

has been made in solving the OWRA free vibration problem by utilizing the detailed finite 

element model (FEM), thus circumventing the approximate dynamic reduction procedure. 

Although this involves the solution of a much higher order eigenvalue problem, the attempt 

was made to determine if this approach can provide more accurate and reliable results. The 
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tasks associated with this project are delineated below. 

1) Review of the X-29A finite element modeling, free vibration results, and 

aerodynamic grids prepared by the NASA STARS - Team. 

2) Flutter analyses of the symmetric and anti-symmetric cases of the X-29A 
using three analytical techniques. The results are then correlated. 

3) Aeroservoelastic controls analysis of the X-29A longitudinal analog 

reversion control mode. The results are then compared to existing results. 

4) Finite element modeling of the OWRA, including the conversion of the 

NASTRAN FEM to a STARS FEM. Also, the node numbers of the OWRA 

FEM are renumbered to minimize the bandwidth, and the validity of the 

FEM is checked. 

5) Free vibration analysis of the OWRA. 

The remainder of this report is described by the following paragraphs. Chapter Two 

briefly discusses the background of this project. This includes a description of the STARS 

analyzed in this project. 
Chapter Three contains the results of the analyses performed on the FSW X-29A. A 

brief review of the finite element modeling and vibration analyses is presented. Three 

solution techniques, namely the k, p-k, and ASE (state-space) methods, are discussed, and 

the results of each are correlated and compared. Also, an ASE controls analysis solution 

technique is described, and the results are correlated. 

Chapter Four contains a brief description of the OWRA, presenting its history and merit 

as a research project. The finite element model is detailed, and the free vibration analysis 

attempt is reviewed. A discussion is presented detailing the advantages and disadvantages 

of using the detailed FEM over a dynamic reduction scheme. 

program, as well as descriptions of the two advanced aircraft, the X-29A and the OWRA, 
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In Chapter Five, the management of the project is presented. The project's 

organizational structure, schedule, and budget are discussed, as are the management 

techniques employed. 

Chapter Six summarizes the resutts obtained, and presents recommendations for 
further research. 

Chapter Seven contains the literature references. 
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2. PROJECT ELEMENTS AND BACKGROUND 

2.1 Introduction 

The Vehicle Technology Branch of the Research Engineering Division of NASA at the 

Dryden Flight Research Facility has developed a computer program, STARS (STructures, 

Aerodynamics, and Related aeroSewoelastic systems analysis), to perform integrated 

structural modeling, and free vibration and flutter/divergence analyses, in addition to 

aeroservoelastic (ASE) stability analyses (References 1 and 2). Several computer routines 

are readily available to perform various facets of the analyses; however, it was deemed 

advantageous to integrate the current and advanced analytical formulations into a single, 

compact computer program. The modular STARS program is interactive and graphics 

oriented, and due to its compactness, it is highly efficient. For these reasons, STARS was 

judged to be an effective tool in the study of two modern high-performance, complex 

airplane configurations. In this chapter, in addition to a description of STARS, features of 

the two forementioned airplanes, the Forward Swept Wing X-29A and the Oblique Wing 

Research Aircraft, are presented. 

2.2 STARS Description 

The STARS program consists of six mapr modules (see Figure 2.1): the preprocessor, 

postprocessor, graphics, the analytical capabilities for FEM structures, unsteady 

aerodynamics, and aeroservoelastic controls. The major capabilities of STARS are listed in 

Table 2.1 , and a simplified flow chart is shown in Figure 2.2. 

The preprocessor module is an interactive graphics program used for the automatic 

generation of finite element mesh for any structure. The preprocessor is able to generate 

complex structures through interpolation, duplication, minor-imaging, and cross-sectioning 

of representative structures by the use of either menu or command options. 

5 
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n Structures 

Figure 2.1 Major Modules of STARS Computer Program 

Table 2.1 Mior Cal>abilAles of STARS 

>>Finite element modeling 
>>Spinning structures 
>>Mechanical and thermal bading 
>>General and composite materials 
>>Vibration 
>>Dynamic response 
>>Buckling 
>>Statics 
>>Unsteady aerodynamics 
>>Fkrtter/divergence analysis 
>>Pad6 and least squares approximations 
>>Open and closed loop aemservoefastic 

controls analyses 
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The finite element module albws structures to be modeled using any combination of 

one-, two-, or three-dimensional elements. The one-dimensional elements include bars, 

beams, and rods. The two-dimensional elements consist of triangular and quadrilateral 

membranes, plate bending, shear, and shell elements including sandwiches and 

composites. The three-dimensional elements include lines, tetrahedrons, hexadrons, and 

prisms. Special features of the finite element module include random data input (meaning 

non-sequential data input is allowed), automatic node and element generation, a matrix 

bandwidth minimizer, general nodal deflection boundary conditions, and multiple sets of 

static loads. A global-local coordinate system exists, with the capability of multiple local 

coordinate systems. Along with the numerical analysis module, the FEM module can 

perform analyses for statics, vibration, buckling, and dynamic responses of structures, 
including those with spinning or prestressed components. 

The unsteady aerodynamics module (Reference 3) is used to calculate the unsteady 

aerodynamic forces in the frequency domain, and for calculating flutter/divergence 

solutions. This module utilizes the doublet lattice technique to determine subsonic forces, 

while supersonic forces are calculated using the Mach box and the potential gradient 

techniques. The flutter and divergence analysis can be performed by either the k or the p-k 
method, as well as by the ASE method. The flutter and divergence techniques will be 

discussed in detail in a Chapter 3. 

The aeroservoelastic controls module considers the aerostnrctural problem in the 

Laplace domain. The unsteady aerodynamic forces are curve-fit using a Pad6 and least 

squares approximation, generating the appropriate state-space matrices (see References 

4, 5, and 6) including the flight control system. This module then performs a coordinate 

transformation from an earth-fiied to a bocty-fied system, which alkws the control laws and 

a feedback system to be incorporated. 
The postprocessor module, along with the graphics module, provides the plotting 

capabilities for the appropriate STARS modules. The plotting capabilities include mode 

shapes, nodal deformations, contour lines of deformations and stresses. Also, flutter and 

divergence plots, and frequency responses from the ASE module are available. 
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The X-29A is a forward swept wing (FSW) airplane sponsored by DARPA and 

supported by NASA. The X-29A shown in Figure 2.3 is a single-seat fighter-type aircraft, 

with a wingspan of 27 ft, length of 48 ft, and with a lightweight fuel loading it has a weight of 

14,931 Ibs (Reference 7). The potential advantages of a FSW that led DARPA to the 

development of the X-29 are summarized in Table 2.2. During the preliminary design phase 

of the X-29, it was decided to incorporate other advanced technologies to maximize the 

available experimental flight test data. Thus, in addition to the forward swept wing concept, 

the X-29A integrates several advanced technologies which are outlined in Table 2.3. 

Figure 2.3 X-29A In Flight 
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2.2 P w l  A- of a Foward WeDt WIng 

1. Improved lateral control at high angles d attack resulting from inboard spanwise 
flaw and subsequent delayed wingtip stall. 

2. A reduction in wing profile drag as compared with an aft swept wing with the 
same shock sweep angle. 

3. A decrease in wing structural box weight or an increase in aerodynamic efficiency 
resulting from the geometric differences in the forward swept wing and the aft 
swept wing for designs with the same shock sweep angle. 

4. Increased fuselage design freedom due to aft placement of the wingbox that 
permits more effective fuselage contouring to minimize wave drag. 

5. Reduced trim drag resulting from less wing twist required with a FSW. 

Jable 2.3 Techno loales Incomo rated o n the X-294 

1. Thin supercritical airfoil for aerodynamic efficiency. 

2. Aeroelastically-tailored composite wing structure. 

3. Variable incidence cbsecoupled canard. 

4. Three-surface longitudinal control. 

5. Relaxed static stabilii (up to %-percent staticany unstable). 

6. Triplex digital fly-by-wire control system. 

7. Discrete variable camber control. 

10 



I 
1 
IC 
I 

I; 

E 
1 
it 
E 

1 
I 
T 
I 

The X-29A aeroelastic wing tailoring is utilized to control the divergence typically 

associated with FSW designs. Aerodynamic efficiency over the flight envelope is optimized 

through the use of dual-hinged, trailing edge flaperons. This optimization provides high lift 

during takeoff and landing, and during lateral control and programmed variable-camber 

operations. As mentioned in Table 2.3, the X-29A has highly relaxed longitudinal static 

stability. Specifically, the addition of the canard to the wing-body results in a negative static 

margin of 35%. As the airplane reaches supersonic speed, the shift in static margin is 

+40%, as shown in Figure 2.4 (Reference 8). This is partly due to the center of pressure 

shift and partly due to the loss of the wing upwash on the canard. Longitudinal control is 

provided by the combination of the all-movable canards, the full-span flaperons, and the 

strake flaps. The single vertical fin that employs a rudder for directional control provides 

directional stability. The digital fly-by-wire flight control systems, in addition to the 

forementioned technologies, results in a highly manueverable airplane over its Mach 

number range. 

Unstable 

-2 

CMCL - 
%MAC 

0 

Stable 

-.2 
0 0.4 0.8 1.2 1.6 2.0 

Mach No. 
- ~ ~~ 

Figure 2.4 Relaxed Static Stability of the X-29A (from Ref. 8) 
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ORIGIN-4L PA-GE IS 
POOR QUALITY 

2.4 Introduction to Oblique Wing Research Aircraft 

The potential benefits resulting from an oblique wing configuration has led NASA in a 

proposed program to design, fabricate, and flight test a full-scale demonstrator vehicle. 

Currently under study is a 300 ft2 oblique wing mounted on an F-8 fuselage as shown in 

Figure 2.5. Because of their asymmetry, oblique wings present unique aerodynamic and 

structural development and analytical challenges. Thus, the OWRA program will provide an 

excellent opportunity to expand oblique wing technology and to study the integrated 

analyses using the STARS program. A description of the proposed OWRA follows. 

Figure 2.5 Artist's Rendition of the Proposed OWRA 
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The characteristics of the OWRA are given in Table 2.4 (Reference 9). The OWRA is 

designed for five in-flight sweep angles: 0,30,45,55, and 65 degrees. The various sweep 

angles of the oblique wing offer several different mission capabilities. The oblique wing, in 

the unskewed position, offers the benefits of a straight wing for bw-speed, high lift flight. In 

the skewed position, the OWRA offers efficient supersonic cruise capability (as compared 

to airplanes with symmetric swept wing configurations.) Thus, the OWRA’s mission 

requirements are supersonic cruise, biter, supersonic dash, and transonic cruise. Figure 

2.6 illustrates fundamental aerodynamic advantages (Reference 10) showing the capability 

of the OWRA to effieciently meet the mission requirements. This is shown quantitatively in 

the drag equation, Equation 2.1, as given by linear theory (Reference 11). 

Here, C b  is the zero lift drag coefficient, q is the dynamic pressure, S is the wing area, L is 

the lift, b is the span, and M is the Mach number. X1 and X2 are averaged lengths X( 8 ) of 

the wing as projected by characteristic planes (Mach planes) set at different angles 8 around 

the X axis. The lengths XI and Xp are defined by Equations 2.2 and 2.3 below. 

2x  
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X1 and X p ,  at low supersonic Mach numbers and large angles of sweep, are 

approximately the actual length of the wing. Thus, the wave drag due to lift diminishes as 

:he inverse square of the length, while the wave drag due to volume decreases as the 

inverse fourth power of the length. 

In addition to the fundamental aerodynamic advantages, the oblique wing avoids the 

aerodynamic center (AC) shift that occurs on the symmentric variable sweep airplanes. 

Avoiding the AC shift reduces trim drag penalties, and results in lighter fuselage and 

horizontal tail structural designs due to reduced tail loads. 

A final major advantage of the oblique wing over the symmetrii variable sweep airplanes 

comes from lii forces that are balanced (for symmetric loads) about a single pivot, as shown 

in Figure 2.7. This results in structural savings by the elimination of one of the dual pivots 

that are utilized on symmetric variable sweep airplanes, and by the reduction of the struc:ure 

required to carry the bending and torque loads that are inherent with the dual pivot 

arrangement. 

2.4 C-oftheProDosedA 

PERFORMANCE 

Maximum normal acceleration 
Maximum dynamic pressure 
Maximum Mach at altitude 
Takeoff gross weight 
wing loading 

Reference area 
Span 
Aspect ratio 
Taper ratio 
Thicknesskhord ratio 
Variable incidence 
Bank angle 
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-2. 4 g*= 
1200 psf 
1.8 at 65 degrees 
25,585 Ibs 
85.3 psf 

301.1 ft* 
55.3 ft 
10.2 
0.385 
14 percent, constant 
0 to 8 degrees 
10 degrees at 65 degree wing skew 



0 Efficient subsonic cruise/loiter 

High aspect ratio 

0 Efficient supersonic dash 

Low aspect ratio 

Figure 2.6 Fundamental Aerodynamic Advantages of Oblique Wing 
(from Reference 10) 

Oblique wing sweep 

Lift 

Pivot torque and bending loads avoided 

Inboard wing torque loads avoided 

Single pivot 

Figure 2.7 Structural Advantage of the OWRA Shown by Avoidance of 
Torque and Bending Loads (from Reference 10) 
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3. X-29A ANALYSES AND RESULTS 

3.1 Introduction 

The increase of aeroservoelastic instabilities in recent aircraft development programs, 

as in the X-29AI has led to the development of needed validated and efficient analytical 

tools. In the area of structural dynamics, analytical analyses are vaal for the prediction of 

flutter and divergence characteristics to ensure flight safety. Following this analysis, a 

complete aeroservoelastic (ASE) controls analysis is often performed, which further relates 

to the safe performance of the aircraft within the designed flight flutter envelope. Currenlly, 

the X-29A flight testing is being conducted at NASA Ames Dryden Flight Research Facility, 

and exhaustive analyses have been performed to support the project. This flight test 

program has given NASA the opportunity to check integrated analytical analyses to an 

extensive flight test data base. The NASA STARS - Team has already performed many 

analyses on the X-29A, and are continuing with this project, as descrbed below. 

In Section 3.2, the finite element model and free vibration analysis results, the first 

steps of the structural dynamics analyses, are reviewed briefly. Section 3.3 presents the 

aerodynamic grids prepared for the symmetric and anti-symmetric X-29A. The aerodynamic 

grid preparation is needed for use in the STARS unsteady aerodynamics module. This 
work was completed by the NASA - STARS Team, but its presentation and review are 

necessary for continuing further analyses. Section 3.4 presents a complete 

flutter/divergence analysis using the STARS unsteady aerodynamics module. Theories for 
the three different solution techniques of the flutter equation (the k, the p-k, and the 

state-space methods) are presented before the comparison of the results. The results are 

divided into two sections, the symmetric and anti-symmetric analyses. In each section, the 

results obtained by the three techniques are compared. Also, the anti-symmetric results 

illustrate the effect of including the rigid body modes in the analyses. In Section 3.5, the 

aetoservoelastic response characteristics for the longitudinal case of the X-29A are 

presented for a few select states. Open and closed loop gain and phase plots are 

presented and compared with existing results. 

16 



3.2 Structural Analysis of the X-29A 

Figure 3.1 depicts the finite element model (FEM) developed and used for the STARS 

vibration analysis. This symmetric half-plane FEM consists of a beam fuselage, and a 

two-dimensional canard, wing, and vertical tail. The FEM has 513 nodes and 1241 

elements using 11 0 different material types. This reduced-order model (3078 degrees of 

freedom) was derived by the equivalent shell method from the contractor's (Grumman 

Aerospace Corporation) full-stress model (approximately 7000 degrees of freedom). 

Specifically, the major airframe equivalent thin shell idealization was accomplished by 

evaluating the stiffness of the individual finite elements in the major directions. This was 

achieved by considering the effect of the skin, webs, spars, and beams. The stiffness of 

the webs, spars, and beams were then added to the appropriate skin elements. The wing 

skin composite material properties were considered to be anisotropic, and were determined 

for each layer of composite fiber orientation. These layers were then combined in 

equivalent shell elements in a local coordinate system by a suitable coordinate 

transformation. This was performed using a program written specifically for this task at 

NASA. The actuators and connecting linkages were modeled by truss and beam elements 

(Reference 2). 

The analyses presented here were performed on the X-29A FEM described above for 

a lightweight fuel loading of 1320 Ibs, or a total weight of 14,931 Ibs (Reference 12). The 

vibration analysis was decoupled, as is usually done, into the symmetricAongitudinal and 

anti-symmetric/lateral-directionai cases. Tables 3.1 and 3.2 compare the free vibration 

analysis results with the ground vibration survey (GVS) results and the Grumman Aerospace 

Corporation (GAC) analysis results for the symmetric and anti-symmetric cases, respectively. 

Figures 3.2 through 3.6 show typical mode shapes for the symmetric case, while Figures 

3.7 through 3.10 show mode shapes for the anti-symmetric case. The STARS FEM and 

the GAC model did not include the modeling of the noseboom, unlike the airplane in the 

GVS. Thus, the noseboom mode identified from the GVS was not identified in the STARS 

analytical results. Apart from this, Tables 3.1 and 3.2 show good correlation between the 

STARS mode shapes and the GVS and GAC mode shapes from Reference 12. There are 

some discrepancies between the analytical and ground test generalized mass calculations, 

however, since neither method is completely accurate, these differences are assumed to 

17 



be acceptable. T h u s ,  it is concluded tha t  t he  S T A R S  analytical results form a high qualitiy 

data base for further flutter and ASE investigations. 

Figure 3.1 Finite Element Model of the X-29A 
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Rigid 
W Y  

W1B 
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F2B 

NB 

CP 

W2B 

W1T 

CBP 

W3B 

Jable 3.1 Free V lbration Analvsls Resu Its for Svmmetrlc X-294 

STARS GAC GVS 

0.0 

8.96 

12.87 

19.03 

- 
21.02 

26.28 

30.30 

47.70 

49.52 

7802.3' 

246.6 

954.5 

104.6 

- 
16.7 

132.6 

134.4 

35.9 

104.0 

rJa 

8.11 

10.02 

19.62 

- 
22.51 

26.36 

37.09 

41.91 

45.86 

7245.3' 

146.0 

518.0 

1034.0 

18.0 

67.0 

65.0 

21 .o 

87.0 

' Half-aircraft weight and lightweight fuel condition 
GVS mode named Wing Inboard Flap Torsion 

G A C : Gnrmman Aerospace Corporation 
G V S : Ground Vibration Survey 

W1B : 
F1B : 
F2B : 
NB : 
CP : 
W2B : 
W1T : 
CBP : 
W3B : 

Wing First Bending 
Fuselage First Bending 
Fuselage Second Bending 
Nose Boom 
Canard pitch 
Wing Second Bending 
Wing First Torsion 
Canard Bending Pitch 
Wing Third Bending 
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8.61 

11.65 

24.30 

20.50 

21.70 

26.30 

36.70 

42.20 

51 .50" 

7465.5' 

140.3 

61 7.8 

281.2 

3.3 

14.2 

23.1 

14.9 

17.3 
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J’able3.2 Free Vlbraun Analys Is Resutts for A n t I- Svmmet rlc X-299 

STARS GAC GVS 

Rigid 
WY 0.0 7802.3’ Wa 7455.0’ Wa 7465.5’ 

W1B 10.08 57.7 13.11 483.7 11.3 75.1 

F1 B 12.35 757.7 9.22 688.5 12.5 426.1 

Fin 1B 17.18 47.6 16.12 16.3 15.2 18.6 

- 20.6 2.0 - - - NB 

CP 21.52 21.5 22.07 34.1 21.9 14.0 

W1T 27.15 84.6 24.85 116.7 26.8 41.1 

W2B 32.88 51 .O 35.95 . 49.9 34.8 31.1 

Fin 28 41.58 7.1 50.23 9.8 45.2 6.8 

W38 45.85 275.4 52.80 51.7 11.1 ee 

Fin 1T 48.95 21.6 44.09 39.1 50.0 4.6 

IFT 50.83 39.5 61 .OO 51 .O 4.6 ee 

Half-aircraft weight and lightweight fuel condition 
Not presented in full aircraft vibration analysis 

W1B : 
F1B : 
Fin lB : 
NB : 
CP : 
WIT : 
W2B : 
Fin2B : 
W3B : 
FinlT : 
IFT : 

Wing First Bending 
Fuselage First Bending 
Vertical Fin First Bending 
Nose Boom 
Canard Pitch 
Wing First Torsion 
Wing Second Bending 
Fin Second Bending 
Wing Third Bending 
Vertical fin First Torsion 
Inboard flap Torsion 
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Figure 3.2 X-29A Symmetric  Wing First Bending Mode ( W l B )  
Top: GVS Mode at 8.61 Hz 
Bottom: STARS Mode at 8.96 Hr 
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Figure 3.3 X-29A Symmetric Fuselage First Bending Mode (FlB) 
Top: GVS Mode at 11.65 Hz 
Bottom: STARS Mode at 12.87 Hz 
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Figure 3.4 X-29A Symmetric Fuselage Second Bending Mode (F2B) 
Top: GVS Mode at 24.3 Hz 
Bottom: STARS Mode at19.03 Hr 
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Figure 3.5 X-29A Symmetric Canard Pitch Mode (CP) 
Top: GVS Mode at 21.7 Hz 
Bottom: STARS Mode at 21.02 Hz 
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Figure 3.6 X-29A Symmetric Wing Second Bending Mode (W2B) 
Top: GVS Mode at 26.3 Hr 
Bottom: STARS Mode at 26.28 Hz 
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Figure 3.7 X-29A Anti-symmetric Wing First Bending Mode (WlB) 
Top: GVS Mode at 11.3 Hz 
Bottom: STARS Mode at 10.08 Hz 
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Figure 3.8 X-29A Anti-symmetric Fin First Bending Mode (Fin 1B) 
Top: GVS Mode at 15.2 Hz 
Bottom: STARS Mode at 17.18 Hz 
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Figure 3.9 X-29A Anti-symmetric Canard Pitch Mode (CP) 
Top: GVS Mode at 21.9 Hz 
Bottom: STARS Mode at 21.52 Hz 
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Figure 3.10 X-29A Anti-symmetric Wing Third Bending Mode (W3B) 
Top: GVS Mode at 51.7 Hz 
Bottom: STARS Mode at 45.85 Hr 
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3.3 Aerodynamic Modeling of the X-29A 

This sedion presents the aerodynamic models prepared for the X-29A. Although this 

work was initially prepared by members of the NASA STARS - Team, review of this material 

was necessary for continuing the fkrtter/dvergence analyses discussed in the next section. 

Referring to the flowchart in Figure 2.2, it is seen that the aero paneling and vibration 

analysis are required for the unsteady aerodynamics calculations. The "Gid change" step is 

to relate the deflections from the vibration analysis to the aerodynamic grid. Reviewing the 

methodology briefly, the modal deflections from the vibration analysis are related to 

interpolating line points input to the STARS-Aero module. The spanwise deflections of the 

interpolation line points are determined (from the vibration data) first by using a Lagrangian 

interpolation scheme (Reference 13). The chordwise points of the interpolating lines are 

then calculated using the same technique. From the interpolation scheme, the deflections 

of the 1Mchord of each aerodynamic element is calculated. The 1Nchord point is used 

for the doublet lattice calculations, as the pressure is assumed to arise from a loaded line at 

this point. 

Following this methodology, aerodynamic models were formed for the symmetric and 

anti-symmetric X-29A. Figure 3.1 1 shows the anti-symmetric X-29A canard, wing, and body 

interpolation lines. The interpolation lines used for the symmetric case are similar to Figure 

3.11, however the vertical tail is excluded. Figure 3.12 shows the doublet lattice 

aerodynamic paneling idealization for the X-29A canard, wing, and body. Figures 3.13 and 
3.14 show the interpolating lines and aerodynamic modeling for the anti-symmetric X-29A 

vertical tail. 

For the purpose of this study, all unsteady aerodynamic calculations were performed 

at 0.90 Mach number and sea-level conditions. The aerodynamic forces used for the 

flutter/divergence analyses were calculated using the STARS analytical mode shapes by 

the doublet lattice technique described above. Also, it should be noted that this 

aerodynamic model does not include the strake, however, modifications were made for later 

analyses not included in this project. 
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Fuselage Station, inches 
Figure 3.12 Vertical Tall Interpolating Lines for X-29A 

Fuselage Station, inches 
Figure 3.13 Doublet Lattice Unsteady Aerodynamic Paneling 

idealization for the X-29A Vertical Tail 
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3.4 Flutter and Divergence Analyses 

In this section, the flutter/divergence analyses performed on the FSW X-29A are 

described. Three different techniques were used for the analyses: the k, p-k, and ASE 

methods. A discussion of the theory for each solution technique is given in sub-section 

3.4.1 , the results are presented in sub-section 3.4.2, and the conclusions are presented in 

sub-section 3.4.3. 

3.4.1 Theory 

Flutter can be defined as the dynamic instability of an elastic body in an airstream 

(Reference 14). Thus, such an analysis is vital for revealing any potential flutter mechanisms 

within the flight envelope. Three different flutter analysis techniques were performed on 

the X-P9A--the k, or "American" method; the p-k, or "British" method; and an ASE, or 

state-space, method, The theory of each technique is presented bn'efly below. 

The general flutter equation can be written in the matrix form as seen in Equation 3.1. 

Both the k and p-k methods of solution (References 15, 16, and 17) can be derived from 

this starting point. 

where M, K, and A represent the generalied mass, stiffness, and aerodynamics matrices, 

respectively; q is a vector of generalized displacements. The term (la) p V2 is the dynamic 

pressure where p is the density and V is the freestream velocity. The matrix K defines the 

elastic characteristics by relating the vector of generalized forces, Q, to generalized 

displacements q, as shown below. 

K q  = Q ( 3 4  

In Equation 3.3, the matrix M defines the inertia characteristics by relating the inertia forces, 

Qi", to the generalized accelerations. 
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Qin = - ~ i i  

The matrix A defines the unsteady aerodynamic forces in Equation 3.4. 

Qa,, = ( I m p @  A q  

Now, using nondimensional operator, p = ( b N  ) ( d/dt ), where b repre 

reference semi-chord, Equation 3.1 can be recast as shown below. 

[ ( V / b ) 2 M d  + K - (1/2)pV2 A @ ) ]  q = 0 

(3.3) 

(3.4) 

ents the 

(3.5) 

For non-zero solutions of q, the determinant formed by the matrix coefficients in Equation 

3.5 must be equal to zero. Thus, for a given value of VI the velocity, the determinant can be 

solved directly for p. This leads to conjugate complex roots as shown in Equation 3.6. 

p = yk f bk (3.6) 

where k defines the nondimensional reduced frequency wbN, where o is the frequency, i 

represents the imaginary number fl , and y defines a rate of decay as in Equation 3.7. 

In the above equation, an+l and an are the amplitudes of successive cycles. For the 

k-method solution technique, the motion is assumed to be simple harmonic, i.e., 

p = bk 
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Also, for the k-method, an artificial damping term, g, is introduced by multiplying the 

stiffness matrix by the complex scalar ( 1 + ieg ). Thus, Equation 3.5 can be recast as 

below. 

[ { ( w b ) 2  M + (1E)p A(Ck)}{-V2/(1+bg)} + K ]  q = 0 (3.9) 

This is the traditional "American" form, or k-method form of the flutter equation. With 

this formulation, the unknown eigenvalue { - V*/(1 + i*g ) } (see Equation 3.10) can be 

determined for chosen values of k. Results from this determination can then be plotted in 

the familiar V 3  format. 

The p-k, or "British" method assumes a response of the form *e@ where p is complex 

as shown in Equation 3.6. No artificial damping term is included in the p-k method as is 

done for the k-method, however, the imaginary part of the aerodynamic matrix is muttiplied 

arbitrarily by p/o. Thus, the aerodynamic forces can be rewritten as shown in Equation 

3.1 1. 

where AR and AI denote the real and imaginary matrices, respectively. Then, using the 

above formulation, Equation 3.1 can be rewritten as shown below. 

( M$ - {(pbV)/(2k)}A'p+ K - (1/2)pV2 A R ) q  = 0 (3.12) 

Equation 3.12 is solved by first specifying V, and then iteratively solving the equations until 

the imaginary part of the solution equals the k value of the aerodynamics. 
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Since the p-k method does not require the inclusion of the aritificial damping term, and 

because it partially accounts for nonoscillatory behavior, it is thougM that this method does 

a better job than the k-method in predicting subcritical behavior. The advantage of the 

k-method is that the solution technique is more dired, and thus less expensive in terms of 
solution time. However, both methods should predict the same dynamic instability speeds. 

The following is the development of the flutter solution technique using the 

aerosenroelastic method (References 2, 4, 5 and 6). This technique is a state-space 

formulation, which is obtained by approximating the aerodynamic influence coefficient 

matrix. The development (Reference 2) starts with the basic equations of motion for an 

elastic airplane, as seen in Equation 3.13. 

(3.13) 

where 

K 

M is the inertia matrix 

CD is the damping matrix 

Q is the dynamic pressure, Q = ~ $ 1 2  

4 is the reduced frequency W ,  o and b being the natural frequency and wing 
semichord length, respectively 

A, is the aerodynamic matrix, calculated for given Mach number and & 
q is the displacement vector, and 
P( t ) is the external forcing function. 

is the elastic stiffness matrix 

Using the STARS program, the assodated free vibration problem is solved, yielding the 

desired eigenvalues, a, and mode shape vectors, +. A coordinate transformation as shown 

in Equation 3.14 is then applied to Equation 3.13. The resutt is Equation 3.15. 

9 = +q 
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Rearranging, Equation 3.15 now becomes: 

(3.15) 

(3.16) 

where the generalized coordinate q = L q~ qe q g  1 and the modal matrix 

t$ = L #R +e Q g  1, incorporate rigid-body, elastic, and control surface motions, 

respectively . 
Each coefficient of the generalized aerodynamic force matrix in the Laplace domain 

may next be expressed as Pade polynomials in ibk ( or SW ) as in Equation 3.17. 

NL A 

. . .  A sb. sb A 2+js 
V 

&(ki) = A o + ~ A 1  + v i2 + E  
j=1 S + b Bj 

where 

A, I A2 are the equivalent aerodynamic stiffness, damping, and 
inertia matrices, respectively. 

are the forces due to the aerodynamic lag t e r n .  

is the imaginary nu-, JT'. 
is the Laplace variable ( bo ). 

is the bcatiin of the Pade pole. 

is the order of the Pade polynomials. 

A2+j 

i 

S 

CVWj 

NL 
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A A 
The coefficients 4, a,, A2, . . ., are determined by a least squares solution using the 

aerodynamic coefficient data ( A, ( ki ) ) for a number of ki values. Now, substituting 

Equation 3.17 into the free-vibration form of Equation 3.16, collecting like terms, and 

assuming two lag terms results in Equation 3.18. 

Equations 3.19 and 3.20 show how Equation 3.18 may be rewritten. 

.1 - a -  A A .. 
M ~ + C D ' I + K ~ + Q A ~ X , + Q A ~ X ~ =  0 (3.19) 

(3.20) 

where I is the identity matrix. Rewriting Eqn. 3.20 in simple terms yields Equation 3.21. 
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Premultiplying both sides by the inverse of M' yields: 

or 

The state-space vector X is now written as below. 

or 

The result of expanding Equation 3.22b is shown in Equation 3.24. 

(3.21) 

(3.22a) 

(3.22b) 

(3.23a) 

(3.23 b) 

(3.24) 

The first set of equations in the above matrix equation denotes the dynamics of the plant, 

while the second set represents the dynamics of the control modes. Considering only the 

plant dynamics, the state-space equation can be written in the form as in Equation 3.25. 

Y d J  4 
X = A X  + B U  (3.25) 

In the above equation, A represents the plant dynamics matrix, and B is the control 

surface influence matrix. A coordinate transformation (Ref. 18) is next performed to 
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transform the state- space matrices from an earth-fixed coordinate system to a body-fixed 

coordinate system to enable the incorporation of control laws and feedback. The result is 

Equation 3.26. 

= A X  + B u  (3.26a) 

where 

A = [TTT]-’[TTXT] (3.26 b) 

In Equation 3.26, T represents the relevent transformation matrix. Finally, the 

aeroelastic stability analysis can be solved over various dynamic pressures, with the solution 

of the eigenvalue problem as seen in Equation 3.27. 

I A - h I I  = 0 (3.27) 

The roots of which are complex, as below in Equation 3.28. 

1 = - a  k i+p (3.28) 

An instability of the system, Le., flutter, is indicated by a change in sign (from negative 

to positive) of the real part, a, of an eigenvalue, h. Divergence is noticed if the 

corresponding frequency, the imaginary part, p, of the eigenvalue, l, approaches zero. 

Since modal damping is proportional to tan ( a / p ), (Ref. 6), the eigenvalue solution as in 

Equation 3.28 can be used to plot the results in a typical V-g diagram. These plots are 

useful in qualitatively assessing the nature of flutter onset, and will be discussed in detail in 

the next section. 

41 



3.4.2 Correlation of Flutter/Dlvergence Analyses 

In this section, the results of extensive flutter/divergence analyses performed for the 

symmetric and anti-symmetric cases of the X-29A are presented. All analyses were 

performed with doublet lattice unsteady aerodynamics, assuming 0.90 Mach number and 

sea level air density. The results are presented in two parts. The symmetric results are 

presented first, followed by the anti-symmetric results. Both parts compare the various 

solution techniques described earlier by V-g diagrams and root-locus plots. 

3.4.2.1 Symmetric Analyses 

The symmetric results comparing the STARS k, p-k, and ASE analytical methods to the 

Ground Vibration Survey (GVS) performed at NASA are shown in Table 3.3. As can be 

seen, good correlation exists between the GVS and the three analytical techniques. 

Figures 3.15 through 3.22 show comparative V-g diagrams for the k-method, p-k method, 

and the state-space (ASE) method flutter analyses of the X-29A. The V-g diagrams indicate 

oncoming divergence when both the damping, g, and frequency, a, approach zero. Flutter 

is indicated when there is positive frequency, but the damping term crosses the imaginary 

axis, becoming unstable. In comparing the k-method to the p-k and state-space methods, it 

is generally found that the p-k damping term is consistent with that of the k-method, while 

the state-space damping term is more conservative. This could be explained since modal 

damping, g, is plotted for the k and p-k methods, while the proportional term ( a / p ) is 

plotted as damping for the state-space method. This is shown on Figure 3.15, and is the 

same for all V-g plots. Usually, the slope of the damping curve is the most observed result, 

though, as this indicates how fast the onset of the flutter or divergence instability will occur. 

Figure 3.15 shows the primary mode leading to wing divergence (WlB). The ASE 

method predicts divergence at 834 kts, a 0.5% difference from the k-method, while the p-k 

method predicts divergence at 900 kts, a 7.4% difference. In the ASE and p-k solutions, 

the frequencies become zero before the damping goes unstable, indicating a 

non-oscillatory motion before divergence. The ASE frequency becomes zero at 

approximately 800 kts, while the p-k frequency becomes zero at approximately 890 kts. 
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The k method predicts oscillatory motion up to the point of divergence. Thus, at this point, 

the k and p-k results are consistent with the theory described earlier. Figure 3.16 shows the 

F1 B V-g plot. The ASE method predicts a 6% lower flutter speed than the k-method, while 

the p-k predicts a 5.5% higher flutter speed. All methods show relatively low damping for 

the fuselage mode. The V-g plot for the F2B mode is shown in Figure 3.1 7. The k, p-k, and 

state-space damping curves are similar in shape, however, the frequency for the p-k and 

state-space methods differs slightly at higher velocities. Figure 3.18 shows the primary 

mode (CP) leading to canard divergence. The ASE method predicts divergence at 918 kts, 

0.5% higher than the k-method. The p-k method also shows good correlation to the 

k-method, predicting divergence at 920 kts, a 0.7% difference. Again, as in the W1B 

divergence, non-oscillatory motion occurs in the state-space and p-k methods slightly 

before divergence, at 900 and 915 kts, respectively. Figure 3.19 shows the V-g plot for the 

W2B mode. The ASE method predicts flutter at 1,157 kts, or 1.2% lower than the 

k-method, while the p-k method predicts flutter at 1,216 kts, 6.4% higher than the 

k-method. Figures 3.20 through 3.22 show the V-g plots for the WlT, CBP, and W3B 

modes, respectively. These plots show good correlation of the damping and frequency 

terms, and no flutter or divergence is indicated at the conditions tested. While there is a 

difference in the magnitude of the damping term between the state-space method and the 

k and p-k methods, the slope of the curves at the instabilities for all three methods are 

similar. 

Using a root-locus type plot, the modes can easily be traced, showing any flutter or 

divergence characteristics. Figure 3.23 shows the root-locus of the symmetric modes, 

taken from the state-space method results. The real (a) and imaginary (p) parts of the 

eigenvalue problem, as in Equation 3.28, are plotted for various dynamic pressures. 

Figures 3.24 and 3.25 show the root-locus plots for the k and p-k methods, respectively. 

On the real axis the damping term gw (damping x frequency) is plotted, while the frequency 

is plotted on the imaginary axis. Note, in Figure 3.24, the k method results show the 

frequency and damping terms simultaneously approaching zero values for the W1 B and CP 

modes, indicating divergence. In Figures 3.23 and 3.25, the ASE and p-k methods, 

respectively, the frequency becomes zero first, then the roots split on the x-axis, with one 

root going unstable, indicating divergence. This is consistent with the theory for the k and 

p-k methods, and with the V-g diagrams presented earlier. The k, p-k, and state-space 
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methods, however, all have similar results for the other roots. Again, note, for the F1 B and 

W2B modes, the roots change signs, becoming 'positive', indicating an instability. Since 

the frequency is not approaching zero, the instability is flutter. 

Table 3.3 ComDarison of X-29A Flutter/Diveraence Solutions, 
Svmmetric Case 

&lQ!&JI l&&MY STARS Ikl STARS b k l  STARS (ASF1 GVS 

W1B Dv. a38 900 834 808 

CP Dv. 91 3 920 91 a 980 

F1 B Flutter a48 895 797 924 

W2B Flutter 1143 1216 1157 1315 
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3.4.2.2 Anti-symmetric Analyses 

In this section, the results of two distinct analyses performed on the anti-symmetric 

X-29A are presented. In the first analysis, the three flutter solution techniques discussed 

earlier were performed on the elastic X-29A, i.e., only the elastic mode shapes and forces 

were included in the analyses, as was done in the symmetric case. The results of this flutter 

analysis are summarized in Table 3.4. Figures 3.26 through 3.31 show V-g diagrams 

comparing the analyses performed, the k, p-k, and the state-space methods for this 

analysis. In the second analysis, the three flutter solution techniques were performed on 

the X-29A in which the elastic and rigid body mode shapes and forces were included in the 

calculations. Figures 3.35 through 3.37 show a few of these results in comparative V-g 

diagrams. A complete description of the the results follow. 

Figure 3.26 shows the comparative V-g plot for the anti-symmetric W1B mode. The 

state-space method predicts divergence at 900 kts, 8.0% higher than the k-method, while 

the p-k method predicts divergence at 920 kts, 10.4% higher than the k-method. The ASE 

and p-k methods both predict non-oscillatory motion at approximately 2 kts before 

divergence. The non-oscillatory motion occurs much closer to the instability speed in the 

anti-symmetric case than in the symmetric case. This could be due to subtle differences in 

the aero modeling, however, a detailed study would need to. be conducted to determine 

the causes. Figure 3.27 shows the V-g plot for the anti-symmetric FIB mode. The k and 

state-space methods do not predict flutter, as the GVS, however the p-k method predicts 

flutter at 1,273 kts. The damping for all three analytical analyses is shallow, and minor 
differences in modeling or numerical solutions could show the instability. Figure 3.28 

shows the anti-symmetric Fin 16 mode. The damping and frequency curves follow each 

other very well in shape, however, in the state-space method the damping is considerably 

less than that experienced in the symmetric case. Figure 3.29 shows the divergent CP 

mode for the anti-symmetric case. The ASE method predicts divergence at 814 kts, 10.7% 

lower than the k-method. The p-k method predicts divergence at 1360 kts, 49.1% higher 

than the k-method. This large discrepancy may be attributed to the coupling of modes, as 

will be discussed shortly. Figure 3.30 shows the anti-symmetric W2B mode. The frequency 

curves agree well for all three solution techniques, however the p-k damping curve differs 

significantly from the state-space and k methods. Figure 3.31 shows the W3B mode. Both 
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the k and ASE methods predict flutter, the ASE method predicting flutter at 1,338 kts, 4.9% 

higher than the k method. However, in the p-k analysis, no instability was detected. 

Figures 3.32 through 3.34 show the structural root-locus plots for the anti-symmetric 

analysis in which only the elastic modes are included. The root-locus plots are shown for 

the ASE, k, and p-k methods in Figures 3.32, 3.33, and 3.34, respectively. In the ASE and 

p-k root-locus plots, the W1 B mode shows non-oscillatory divergence, while the k method 

indicates oscillatory motion up to divergence, as the damping and frequency curves 

simultaneously approach zero. The shape of the F1B mode shows flutter, however the k 

and state-space methods do not indicate flutter in the velocity region checked. In the 

STARS analysis, mode 8 is the canard pitch mode. Checking the three root-locus plots, 

however, mode 7 indicates divergence. Since mode 8 crosses mode 7, coupling is 

assumed, and thus the canard pitch mode diverges. It is assumed that this coupling 

phenomenon causes numerical problems for the iterative solution technique used by the 

p-k method. The other modes are indicated on the root-locus plots. Note, the W3B mode 

shows flutter in both the k and ASE methods, and the shape of the p-k solution is similar, 

however flutter is not indicated in the velocity region analyzed. 

A study was also performed, as mentioned earlier, to determine the effect of the rigid 

body mode shapes and forces in the flutter/divergence analysis. Three comparative V-g 

plots are shown in Figures 3.35 through 3.37. Figure 3.35 shows the W1 B mode when the 

rigid body modes are included in the calculations. All three plots show similar shapes, 

except only the p-k method shows the flutter instability at 870 kts. Figure 3.36 shows the 

CP anti-symmetric mode with the inclusion of rigid body modes. The ASE method shows 
CP divergence at 870 kts, while the k method shows flutter at 850 kts. The p-k method 

method shows divergence at 1,360 kts. Again, there is very poor correlation between the 

p-k method and the ASE and k methods. Figure 3.37 shows the W3B mode for the rigid 

body anti-symmetric analysis. The k and state-space methods both predict flutter, and in 

the p-k method no flutter is indicated as in the elastic anti-symmetric case. A summary of the 

anti-symmetric flutter analysis including the rigid body mode shapes and forces is given in 

Table 3.5. 

Figures 3.38 through 3.40 show the root-locus plots for the anti-symmetric case 

including the rigid body mode shapes (modes 1 - 3). The root-locus plots show the ASE, k, 

and p-k methods in Figures 3.38, 3.39, and 3.40, respectively. Of the rigid body modes, 
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two are shown diverging for all three cases. Since the W1B mode does not diverge in the 

three cases, it is assumed that coupling occurs with one or all of the rigid bodies. The other 

modes are shown, most of them similar to the elastic root-locus plots. 

Table 3.4 ComDarison of X-29A Flutter/Diveraence So lutions, 
)lntl-svmmetric Case 

m m  
W1 B Dv. 

CP D'i. 

CBP Flutter 

W3B Flutter 

F1 B Flutter 

STARS fk) STARS (pkl STARS fASF! GVS 

833 920 900 865 

91 2 1 360 81 4 1017 

- 694 

1275 - 1338 1222 

CI - 

- - - 1273 

Table 3.5 ComDarlson of X-29A FlutterlDIveraence So lutlona 
Antl-svmrnet ric Cas e lncludina Rlaid Bodv Modes 

MQ& lnstabilitv STARS fkl STARS fd<l STARS fASR 

- 870 W1 B M e r  - 
F1 B Flutter 1926 1317 - 
CP Div. 850 (flutter) 1360 870 

- - W2B Flutter 1320 

W3B Flutter 1269 - 1338 
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3.4.3 Conclusions 

The theory for three flutter solution techniques (the state-space, k, and p-k methods) 

performed on the X-29A has been presented. Also presented in Section 3.4 were the 

results of these three methods. The conclusions about each solution technique are given 

in this sub-section. 

The k-method results for both the symmetric and anti-symmetric cases of the X-29A 

showed good correlation to the ground vibration survey results. This method assumes that 

damping and frequency simultaneously approach zero for a divergence instability. The 

solution of the k-method formulation is relatively quick, and since this method is often used 

in flutter calculations in the aerospace industry, the results are trusted. 

The p-k method results showed good correlation for the symmetric case of the X-29A 

to the GVS results, while poor correlation was shown for the anti-symmetric case. The 

anti-symmetric case shows two modes crossing (modes 7 and 8). It is assumed that this 

crossover causes numerical instabilities for the p-k solution technique. The p-k method 

uses an iterative solution technique, and thus its solution of the flutter equation is time 

consuming. The p-k method, though, is believed to show actual damping in the case of 

divergence, unlike the k-method. The p-k method illustrated non-oscillatory motion before 

divergence in the W1 B and CP modes. 

The state-space method has shown good correlation of results to the ground vibration 

survey results, and to the k and p-k method results. The solution can be obtained 

efficiently, basically as a side calculation to aeroservoelastic controls analyses. The 
state-space method showed damping curves similar to the p-k method in the respect that 

non-oscillatory motion was detected in diverging modes. The damping term, cdp, however, 

is different than the damping term, g, of the k and p-k methods. 

In the anti-symmetric analysis including all the structural modes, the results for all three 

methods varied significantly to the analysis including only the elastic modes. The 

differences are assumed to arise from coupling of the rigid body modes to the elastic 

modes. It was observed, however, that the state-space method was less sensitive to the 

coupling of the elastic and rigid body modes. 
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3.5 Aeroservoelastic Controls Analysis 

In this section, the interaction between the aeroelastii dynamics and a control system 

of the X-29A is studied. There are three sub-sections detailing the analyses performed. 

Subsection 3.5.1 describes the analyzed X-29A FSW control system. Subsection 3.5.2 

briefly reviews the theory used in obtaining the STARS results. The results of open and 

closed loop analyses are presented in sub-section 3.5.3. These results indicate rigid body 

and elastic responses, and are compared with other existing results. 

3.5.1 X-29A Flight Control System Descrlptlon 

Due to the unique configuration of the X-29A, a control system design was needed to 

provide stability, and to ensure safety of the airplane. The relaxed static stability of the 

X-29A is entirely introduced by the canard control surface, and the wing-body is actually 

more stable than a typical aft tailed airplane (Ref. 19). Thus, the airplane can be stabilized 

using existing off-the-shetf actuators and hydraulic systems. To stabilize the airplane, the 

control system must keep a force from building up on the canard. At subsonic speeds, the 

canard must retain adequate control power to check any pitching velocity that may develop. 

At supersonic speeds, the airplane achieves low static stability as seen earlier in Figure 2.4, 

and therefore retains high maneuverability. 

The X-29A flight control system (FCS) is a triple redundant digital fly-by-wire control 

system, as depicted in Figure 3.41. Each of the three digital computers has an analog 
backup computer in parallel. The FCS uses seven F-16 Waterlift actuators and two Moog 

actuators. The F-16 actuators drive the two canards, each with its own actuator, six 

segmented trailing edge flaperons driven by four actuators, and the rudder (Ref. 8). The 

Moog actuators drive the two strakes. The all-movable canards on the airplane are the 

primary aircraft pitch controller, and are augmented by the wing flaperons and strake flaps. 

Symmetrical deflection of the flaperons also provides variable camber control. Differential 

deflectim of the full-span flaperons provides roll control, and a full-span rudder provides 

directional control (Ref. 19). The flight control computers, sensors, and the attitude and 

reference system are mounted in the nose of the airplane. The rate gyros and 

accelerometers are located aft of the cockpit and in the wheel-well. The pitch gyros are 
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mounted on the bottom of the airplane keel just forward of the wheel-well for structural 

isolation. There are two sets of three gyms, a primary set dedicated to the digital computer, 

and a backup set dedicated to the analog computer, but the latter is also available to the 

digital computer. 

The X-29A FCS has been configured with multiple modes, so in the event of 

component failure, the system performance degrades to the next level. Normal operation 

of the X-29A is accomplished via the Normal Digital mode (ND-mode) with the associated 

option of Automatic Camber Control (ACC). A Normal Power Approach (PA) mode is used 

for take-off and landing. Two reversion modes have been designed in case of failure of the 

ND-mode. The Digital Reversion mode (DR-mode) provides digital control with software 

dissimilar from the ND-mode, and control independent of non-vital sensors. The Analog 

Reversion mode (AR-mode) provides control in the event of a generic digital control fault. 

The AR-mode contains a two gain set, Up and Away (UA), and Power Approach (PA) for 

takeoff and landing. The analyses detailed here were performed using the longitudinal AR- 

mode, shown in Figure 3.42. In the AR-mode longitudinal system, the stick pitch command 

activates the deflections of three control surfaces, the canard, flaperon, and strake. The 

resulting longitudinal pitch rate motion is sensed and fed back to close the loop. 

Proportional plus integral compensation is provided in the longitudinal AR-mode case, as 

seen in Figure 3.42. 

Figure 3.41 X-29A Flight Control System (from Ref. 18) 
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3.5.2 Theory of Response Analyses 

This sub-section briefly describes the theory used in the open and closed loop 

analyses performed on the X-29A. Recalling Equation 3.26, the plant dynamics of the 

aircraft are written in state-space form, transformed from eatth-fixed coordinates to 

body-fixed coordinates, shown below. 

X = AX + BU (3.26a) 

In the above equation, A represents the plant dynamics matrix, and B represents the 

control surface influence matrix. A sensor interpolation matrix is developed next, deriving 

displacement, velocity, and acceleration from the structural data. When applied to Equation 

3.26a, the output, y, is related as shown in Equation 3.29. 

y = CX + DU (3.29a) 
where 

and 

C = T,$A (3.29b) 

D = T,$B (3.29~) 

In the above Equation, C and D are matrices signifying output at the sensors due to the 

body and control surface motions, respectively. Figure 3.43 shows a simplified block 
diagram for an aircraft with a feedback control system. The open loop transfer function, 

H(s), can be derived by applying a Laplace transformation to the state-space equations, 

(Equations 3.26a and 3.29a). The result is shown below. 

where 
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(3.31) 



A 
The closed loop transfer function, H ( s ), with a controller gain G ( s ), is derived from 

the relations in Equations 3.32 and 3.33. 

where 

(3.32) 

(3.33) 

In Equation 3.32, r ( s ) is the reference input. The matrix inversion involved in Equation 

3.31 for each value of s could be quite laborious. However, in the solution technique used 

here, this problem is avoided by first solving the eigenvalue problem for the matrix A (see 

Equation 3.27), then a coordinate transformation is applied, resulting in the open loop 

transfer function shown be low. 

H ( S )  = C W ( S I - I . ) - ~ W - ’ B  + D (3.34) 

where 1 and w are the eigenvalue and eigenvector matrices, respectively, of A. Note that 

the term ( s I - h )  is a diagonal matrix, and thus its inversion is trivial. Therefore, the 

calculation of H ( s ) using Equation 3.34 is a much simpler task. With the formulation of the 

transfer functions, the phase and gain may be calculated and plotted as functions of 

frequency using typical Bode plots. Such results follow. 

f 
DU 

I 1 

I GY I 
Summing Junction outputs 

u = r - G y  
X = AX + Bu 
y = cx + Du 

Figure 3.43 Simplified Aircraft Feedback Control System 
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3.5.3 X-29A Open and Closed Loop Results 

The results of the ASE control analysis performed on the symmetric X-29A are 

presented in this sub-section. In the ASE analysis, the longitudinal analog control laws of 

the AR-mode are augmented with the plant to compute frequency responses. The plant 

consists of the rigid body states, elastic structural modes, and two unsteady aerodynamic 

lag states. The sensed measurements include rigid body and flexible effects. This analysis 

compares STARS results for plants including rigid body modes and for rigid and elastic 

modes to Grumman Aerospace Corporation results for both the open and closed loop. 

The criteria for the dynamic stability of the X-29A augmented with the airframe was 

based on MIL-F-9490 (Ref 19). This specification (Ref. 20), when applied to a conditionally 

stable closed loop system, as on the X-29A, requires gain and phase margins of +6 dB and 

45 deg, respectively, for all system modes with frequencies below the first structural mode. 

These requirements, however, were reduced by a factor of two since, among other 

reasons, the X-29A is not a production airplane, and the flight control system component 

tolerances are very tight and are extensively checked before and after each flight. Also, per 

MIL-A-008870A (Ref. 21), the open loop augmented aircraft frequency response curves 

should not have any gain crossovers at airframe resonances, and a gain margin of at least 6 

dB is required. This provision required the design and implementation of notch filters in the 

flight control system. 

The Grumman Aerospace Corporation (GAC) results were determined from their 

in-house analysis program, SAEL (ServoAeroELasticity) as described in Reference 22. 

The GAC SAEL results include analytical unsteady aerodynamics based on the ground 
vibration survey mode shapes, augmented with wind tunnel steady aerodynamics. The 

STARS open and closed loop results include the analytical unsteady aerodynamics (based 

on STARS analytical mode shapes) referenced to the controller, and augmented with wind 

tunnel based steady aerodynamics. Figures 3.44 through 3.48 compare various open loop 

frequency responses for STARS rigid body and elastic modes to SAEL elastic results. The 

AR-mode (with q feedback) open loop input and output is indicated on Figure 3.42. Closed 

loop comparisons of q and nz feedback are shown in Figures 3.49 through 3.53. Both the 

open and closed loop results investigate the effectiveness of the structural notch filters by 

running analyses including and omitting the filters. 
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Figure 3.44 shows the phase and gain plots for the STARS rigid body open loop 

analysis including the notch filters. Below the first elastic structural mode (W1 B) of 56.3 rad, 

these plots show gain margins (GM) of -5.85 at 1.43 rad and 4.06 dB at 30.3 rad. The phase 

margin of 34.95 deg occurs at 13.9 rad. All meet the stability requirements mentioned 

earlier. Figure 3.45 shows phase and gain plots for the STARS flexible AR-mode open 

loop, with notch filters. The response is similar to the rigid body open loop, however the 

flexible effects of the structure are shown at about 160 rad. These plots show gain margins 

of -3.84 dB at 4.71 rad, and 5.93 dB at 30.53 rad. A PM of 27.3 deg occurs at 10.8 rad. 

Figure 3.46 shows the phase and gain plots for GAC SAEL results of the flexible AR-mode 

open loop with notch filters. The SAEL results show gain margins of -4.3 dB at 3.5 rad and 

6.4 dB at 29.5 rad. A PM of 35.7 deg occurs at 10.9 rad. Comparing the STARS and SAEL 

flexible results, relatively good correlation is shown for the phase and gain plots, however, 

the elastic structural effects vary somewhat. Specifically, the SAEL results indicate greater 

response at the structure's natural frequencies. This difference could be attributed to the 

fact that the SAEL results use the ground vibration survey in their calculations, while the 

STARS results are completely analytical. 

Figures 3.47 and 3.48 show the phase and gain frequency responses for the STARS 

and SAEL AR-mode open loop without the structural notch filters. The STARS results 

show gain margins of 4 .2  dB at 4.3 rad and 6.1 dB at 47.5 rad. The SAEL results show gain 

margins of -5.7 dB at 2.9 rad and 7.6 dB at 42.7 rad. The STARS analysis shows a PM of 

43.0 deg at 11.1 rad, while the SAEL analysis shows a PM of 51.7 deg at 11.5 rad. Thus, 

the curves show relatively good correlation concerning the phase and gain margins. 

However, the flexible effects shown in the two analyses vary significantly. The STARS 

analysis does not indicate any instabilities, Le., no gain crossovers are exhibited while the 

SAEL results show two instabilities occurring. The SAEL results show instabilities at 

approximately 71 rad and 126 rad. These frequencies correspond to the fuselage first 

bending (FlB) mode and to the noseboom (NB) mode. The differences in the response 

plots, again, can be explained since the SAEL analyses used the GVS mode shapes, while 

the STARS analyses were based on its analytical eigenvalues and eigenvectors. The 

second difference is attributed to the STARS FEM. Since the X-29A FEM did not include 

the noseboom, this mode was not present in the STARS analysis. Currently, efforts are 

being made to include the noseboom into the STARS finite element model, thus allowing 
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comparisons to be made at a later date. The response curves from the closed loop ASE 

controls analyses performed on the longitudinal X-29A are described below. 

The primary purpose of the closed loop analyses is to determine if any adverse 

airframe/control coupling occurs. For instance, ASE instabilities involving flexible modes 

may exist for a particular feedback FCS design. These analyses, with notch filters included, 

would confirm filter effectiveness in suppressing the instability without degrading the rigid 

body phase and gain margins. Figures 3.49 and 3.50 compare STARS rigid body and 

flexible closed loop response analyses with nz feedback and notch filters. Good correlation 

is shown between the rigid body and flexible phase and gain response plots. The rigid 

body has a phase crossover at 23.2 rad with a GM of -14.1 , while the flexible analysis shows 

a phase crossover at 23.8 rad with a GM of -13.5 dB. The respective PM are 59 deg and 50 

deg occurring at gain crossovers of 33.5 rad and 32 rad. Figures 3.51 through 3.53 show 

the comparative closed loop plots without notch filters from the stick input with q feedback. 

Figures 3.51 and 3.52 show the STARS rigid body closed loop and the STARS flexible 

closed loop phase and gain response plots. Figure 3.53 shows the SAEL flexible closed 

loop phase and gain response plots. All three show good correlation, however, the SAEL 

phase and gain plots show more response at the natural frequencies. 

The extensive flight testing of the X-29A has given many valuable results, and some of 

these have been compared to the STARS analytical results. Good correlation has been 

shown between the STARS closed loop damping and frequency and flight test closed loop 

damping and frequency results, however, due to security requirements, this information 

may not be shown. 
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4. OBLIQUE WING RESEARCH AIRCRAFT 
ANALYSES AND RESULTS 

4.1 Introduction 

The proposed Oblique Wing Research Aircraft's unusual configuration provides the 

opportunity to study unique aerodynamic and structural problems. Because of the 

asymmetry associated with oblique wings, aeroelastic behavior and handling qualities are 

areas which require special consideration. This project starts analyses on the OWRA using 

the STARS integrated analytical program. Specifically, finite element modeling and free 

vibration analyses are performed on the OWRA, and the results are discussed in this 

chapter. Further analyses, such as unsteady aerodynamic calculations, flutter and 

divergence analyses, and ASE analyses will need to be conducted, however these 

analyses are not included in this project. 

Section 4.2 of this report describes the conversion of the OWRA finite element model 

from NASTRAN format to STARS format. Also, the validity of the FEM is discussed. In 

Section 4.3 the approach to reduce the FEM matrix bandwidth is outlined, and the results 

are discussed. Section 4.4 presents the results of the free vibration analyses. 

4.2 The OWRA Finite Element Model 

This project started with the arrival of a complete FEM from the NASA contractor 

working on the OWRA. The FEM data file received was in NASTRAN format, thus the file 

needed to be converted to STARS format to start the integrated analyses. A computer 

program, NSTARS, was developed and used in the conversion of the FEM data file. 

NSTARS is an interactive program written to convert any NASTRAN data file to a format 

compatible to STARS. After the conversion, the STARS finite element model was 

thoroughly checked against the NASTRAN data file to ensure no mistakes were made. 
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The OWRA finite element model consists of a simplified fuselage model (Figure 4.1), a 

three dimensional pivot pin support structure (Figure 4.2), and a three dimensional wing 

(Figure 4.3). The complete finite element model (Figure 4.4) consists of 1,380 nodes and 

3,897 elements using 32 different material types. The wing uses 757 nodes, while the 

pivot structure and fuselage use 468 and 152 nodes, respectively. There are 3 third point 

nodes, making the total of 1,380 nodes. Due to the right wing being swept forward at any 

skew angle, aeroelastic tailoring of the wing was required, and thus composites were used 

in the design and analysis of the OWRA FEM. The composites on the STARS FEM were 

considered anisotropic, and the stiffness of the layers were combined into a single shell. 

Figure 4.1 STARS OWRA Finite Element Model of the Fuselage 
and Empennage 
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Figure 4.2 STARS OWRA Finite Element Model of the Pivot Structure 

Figure 4.3 STARS OWRA Finite Element Model of the Wing 
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At this point, the validity of the STARS FEM was looked into. A simple check of the 

fuselage was performed to ensure that it was modeled properly. This was achieved by 

isolating the fuselage and pinning one end to simulate a cantilevered beam. Theoretically, 

for a cantilevered beam with a load concentrated at the free end, the displacement is 

proportional to the load. Thus , a simple check for two concentrated loads was performed 

on the fuselage, and no discrepancies were found. Also, the complete FEM was checked 

for quadrilateral elements that had a length to width ratio greater than 4:l , as such elements 

may cause numerical instabilities in the analyses. Several elements were found along the 

flaps with ratios of approximately 1O:l , and necessary corrections were made. 

4.3 OWRA Bandwidth Minimization 

In this project, the complete FEM was utilized in the structural dynamic free vibration 

analyses for reasons described below. First, the complete finite element model was used to 

eliminate any errors associated with the approximate Guyan reduction scheme (see 

Reference 23) commonly used to reduce the magnitude of the eigenvalue problem in 

vibration analyses. This reduction scheme was performed by the contractor to amve at their 

results given in Reference 9. Second, the highly efficient STARS computer program was 

deemed feasible for the solution of the OWRA eigenvalue'problem, although utilizing the 

complete FEM results in a 8,262 order problem. 

The solution of very large order eigenvalue problems poses many problems, one of 
which is long solution times. The STARS solution time of the structural eigenvalue problem 

increases as the square of the half-bandwidth, where the half-bandwidth is given in 

Equation 4.1. 

where nj and ni represent the highest and lowest connected node numbers. To make 

efficient use of computer CPU time, an attempt to minimize the bandwidth of the complete 

FEM was performed. Although the STARS program has a minimization scheme, it was 

deemed helpful to carefully number the nodes by hand with minimum bandwidth in mind. In 

97 



earlier oblique wing finite element models, the bandwidth increased dramatically unless 

particular attention was paid to the wing numbering. Thus, the nodes on the wing were 

renumbered as described below. 

The minimization scheme of the STARS program achieved a half-bandwidth of 648, or 

a maximum difference of 107. Using this as a guideline, the nodes on the wing were 

renumbered, alternating wing tips, working towards the pivot substructure. After 

considerable work, the maximum difference of connecting nodes on the wing was 84, 

giving a half-bandwidth of 510. This would have reduced the solution time by about 40%. 

The pivot and fuselage numbers were then renumbered consecutively, corresponding to 

their original numbers. The STARS program was then run to determine the half-bandwidth, 

and the result was 1,248. Thus, a node numbering problem was found to be in the pivot 

substructure. An attempt to renumber the nodes on the pivot below a maximum difference 

of 107 was performed. However, due to the complexity of this structure, a lower bandwidth 

was not achieved. As a result, the original node numbering was kept, and the 

half-bandwidth was 648. 

4.4 OWRA Free Vibration Results 

The OWRA free vibration analyses utilizing the complete FEM were performed via the 

STARS program. Since the FEM is not symmetric, both the symmetric and anti-symmetric 

analyses had to be performed simultaneously on the OWRA. The solution of this large 

eigenvalue problem proved to be very time consuming, causing a time extension of this 

project. Several problems contributed to the delays, such as computer management 

problems (of the NASA VAX 11-750), debugging of the STARS code, and the actual 

solution of the eigenvalue problem. The first attempts at the solution resulted in several 

errors in the STARS computer program. The errors turned out to be storage and memory 

requirement problems, and were easily corrected. However, tracing the errors took 

approximately one month of continuous debugging effort. With the errors corrected, new 

attempts to solve the eigenvalue problem were conducted. Due to the length of time 

required to compute the solution, several more problems arose, particularly with the 

computer management. Problems such as air conditioning failures and constant system 
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crashes delayed the results even further. The problems were eventually corrected, and 

results of a limited free vibration analysis were finally obtained, as described below. 

Due to the problems which occurred in the free vibration analysis, a limited eigenvalue 

solution was ran on the OWRA. The OWRA structural analysis eigenvalue problem was 

solved by the STARS analytical program using the S t u n  sequence and inverse iteration 

technique (see Reference 1). The Sturm sequence may be used to locate any individual or 

group of eigenvalues between a lower and upper bound (Reference 24). The free vibration 

analysis performed gave eigenvalues between the upper and lower bounds of 100 rad/sec 

and 12 radkec, respectively. The results are summarized in Table 4.1. 

The results of the STARS free vibration analysis display a similar pattern of eigenvalues, 

as compared to the results of the Guyan reduced FEM analysis in Reference 9. The mode 

shapes, however did not correlate well, and refinement of the STARS FEM is needed 

before continuing the analyses. Due to limited time, the refinement process was not 

included in this project. 

Table 4.1 Resu Its of the OWRA Free Vibration Analvsls 

sImsMak EEuxlam 

24 3.467 

25 6.006 

26 8.498 

27 8.498 
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5. PROJECT MANAGEMENT 

5.1 Introduction 

The Master of Engineering (M.E.) program at the University of Kansas requires the 

candidate to assume specific technical and managerial responsibilities of a major project. 

These responsibilities, which are attained on this project, are delineated in this chapter. 

The overall objective of this M.E. project is to study the integration of structures, 

aerodynamics, and controls on two advanced airplane configurations. Due to the increasing 

design of highly flexible structures using high gain flight control systems, such integrated 

analyses are becoming important to ensure flight safety. This project accomplishes the 

integrated study with the use of the integrated numerical STARS program at NASA Dryden 

Flight Research Facility. 

5.2 Project Management 

This M.E. project is a joint program between NASA Ames Research Center 

(NASA-ARC) and the University of Kansas Center for Research, Incorporated (CRINC). The 

project was initiated by the principal investigator, Dr. Paul E. Fortin, Director of the M.E. 

program at the University of Kansas, and started with the issuance of a grant from 
NASA-ARC to CRINC. The research and analyses were performed at NASA Ames DFRF in 
the Vehicle Technology Branch of the Research Engineering Division. The organizational 

structure showing the relationship of NASA-ARC to the Vehicle Technology Branch is 

shown in Figure 5.1. 

At NASA DFRF, this candidate performed as the manager of the project described here 

under the supervision of Dr. Kajal K. Gupta. The responsibilities included project planning 

and scheduling, and supervising and coordinating the different groups and individuals 

involved with this project. Figure 5.2 shows the organization of these groups and 

individuals in relation to this project. A brief description of each follows. 
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As stated earlier, the principal investigator is Dr. Paul Fortin. Dr. Fortin provided the 

administrative and financial direction of the grant, and acted as liaison between CRlNC and 

NASA-ARC, as seen from the communicationkoordination line on Figure 5.2. Dr. Kajal K. 

Gupta, the technical officer and project supervisor, provided the guidance for this project, a 

section of the STARS project. Harvey Mudd College (HMC) in Claremont, California was 

under contract to NASA-ARC, also under the supervision of Dr. Gupta. HMC provided 

professional personnel and staff to support the STARS project, and staff to maintain the 

NASA VAX 11 -750 computer kept at the college. The personnel working on the STARS - 
Team is also shown in Figure 5.2 Mr. Leonard Voelker, a senior NASA Aerospace 

Engineer, provided guidance in the development of the X-29A aerodynamics model, and 

interpretation of the aerodynamic analytical results. Mr. Marty Brenner, a NASA Aerospace 

Engineer in ASE controls, provided the tools and guidance for the controls analyses. 

There are various others working on the STARS project, however, only those directly 

involved on this project are listed. Mr. Ali Ahmadi, a graduate student at the University of 

Kansas, along with Aerospace Engineers at NASA, Mr. Edward Hahn and Mr. Roger Truax, 

performed the X-29A finite element and aerodynamic modeling, and completed the 

vibration analysis. Mr. Hahn and Mr. Truax continued at NASA with the assistance of the 

aerodynamic and control analyses. Mr. Ahmadi provided technical guidance and was the 

STARS programming specialist. Mr. David Brock at HMC worked on programming used in 

the preparation of the OWRA FEM. Also working on this project under supervision were 

summer hires at NASA DFRF. 

Management of the STARS - Team personnel involved no problems, since all were 
engineers, and quite professional. Little supervision was necessary, and motivation was 

high. Conflicts, however, did arise in the management of computer resources. There was 

no direct supervision line from the project manager to the computer systems at HMC, 

exceptlo back up through the channels. Two specific problem areas were noticed. First, 

the hours worked by the college staff varied significantly from the NASA staff. Thus, as a 

result, it could take as long as two hours to inform the computer systems manager of any 

problems. The second problem area involved the motivation of computer systems staff. 

Most of the HMC computer staff was very helpful, however, at times it would take repeated 

instructions and constant supervision to accomplish a task. To accommodate, different 

management techniques had to evolve for the supervision of the project, as is often done 
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in project management. Also, the delays were simply managed around, as several tasks 

were planned to fall back on in case of computer problems. However, constant computer 

problems close to the end of the project did cause some time delays, as explained in 
Chapter 4. 

5.3 Project Scope and Scheduling 

The objective of this project, as stated earlier, is to study the integration of structures, 

aerodynamics, and controls on two advance airplane configurations, the FSW X-29A and 

the OWRA. The tasks involved in this are listed briefly below. 

1. 

2. 

3. 

4. 

5. 

6. 

7 .  

Review of X-aA finite and aerodynamic modeling, and vibration analysis. 

Flutter analyses of the symmetric and anti-symmetric X-29A using the k and p-k 

methods (note anti-symmetric p-k analysis added from proposal, Ref. 23). 

Flutter analyses of the symmetric and anti-symmetric X-29A via the ASE or 

state-space method. 

Aeroservoelastic controls analyses of the symmetric X-29A for the analog 

reversion mode. Comparison of STARS results to existing results. 

Finite element modeling of the OWRA, including conversion of NASTRAN 

model to STARS model, renumbering of nodes, and checking the numerical 

validity of the model. 

Free vibration analysis of the OWRA. 

Project final report write up. 

The schedule of these tasks is shown in Figure 5.3 comparing the proposed schedule 

(Ref. 25) along with the actual schedule. The actual schedule shows an extension granted 

to this project. The extension became necessary when problems arose in the vibration 

analysis of the OWRA. These problems included unexpected delays from debugging 

programs, and from computer system crashes. 
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5.4 Project Budget 

The initial budget for this grant was negotiated by the University of Kansas Center for 

Research, Inc. with NASA Arnes Research Center. Table 5.1 shows the breakdown of the 

initial budget, which totaled $44,050. One major difference between the actual and 

proposed budget is that the 4 months of 50% time at $1 200/month was changed to 1.5 

months of 100% at $1 600/month. This time was initially planned to finish course work at the 

University of Kansas, however, since there was no need for this, and due to experienced 

delays, the extra time was spent at NASA DFRF to continue research. This change in the 

budget and schedule drained the monetary sources, leaving no funds for return travel or 

miscellaneous costs. Thus, a one and one-half month cost extension of $4,000 was 

negotiated between CRlNC and NASA-ARC. This extra time was spent doing research for 

NASA at the Dryden Flight Research Facility, and working out problems from the 

experienced delays. The supplirnental budget for the extension is shown in Table 5.2. 
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Table 5.1 Initial Proiect Budaet 

DIRECT COSTS 

&W- 

Administrative Support 

Graduate Student 
50% for 7 months (1/1/86 - 7/3/86) @ $1100/month 
100% for 13 months (8/1/86 - 8/31/87) @ $1600/month 
50% for 4 months (9/1/87 - 12/31/87) @ $1200/month 
(100%for 1 1/2 months (9/1/87 - 10/15/87) 

Total Salaries & Wages 

R e m  

19% Administrative 

13% for 13 months 

1% for 11 months 

m e r  m.a costs 

Student moving and travel 

FacuItyTTechnical Advisor travel 

Tuition 

Publication , Miscellaneous 

Total Direct Cost ( TDC ) 

INDIRECT COST @ 22.5% OF TDC 

$ 1,800 

3,850 
20,800 
2,400 

$28,850 

342 

2,704 

63 

1,300 

600 

1,800 

300 

$35,959 

8,091 

TOTAL COST: $44,050 
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Table 5.2 SUDD llmental Budaet 

DIRECT COSTS 

& w w  
Graduate Student 
100%for 1 1/2 months (10/15/87 - 11/30/87) @ 1600/month $ 2,400 

Benef i$ 

13% for 1 1/2 months 

Other Direct CQ& 

Student travel (for presenting research results) 

Total Direct Cost (TDC) 

INDIRECT COST @ 25% OF TDC 

TOTAL COST: 
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490 

$ 3,200 

800 

$ 4,000 



6. CONCLUSIONS AND RECOMMENDATIONS 

6.1 Project Review 

This project has encompassed a study of structures, aerodynamics, and control 

integration on two advanced airplanes, the Forward Swept Wing X-29AI and the Oblique 

Wing Research Aircraft. This project was accomplished at NASA Dryden Flight Research 

Center using the integrated analytical program, STARS. The analyses presented were 

performed by the candidate and the STARS - Team in a project environment, which well 

suits the requirements of the Master of Engineering program at the University of Kansas. 

Specifically, the environment at NASA has given the candidate the opportunity to work in a 

group, as well as to supervise the progress of this project. The division of each task is 

delineated below, showing the technical and supervisory skills used. 

The tasks performed on the X-29A included finite element modeling, free vibration 

analysis, subsonic unsteady aerodynamic calculations, flutter and divergence analyses, and 

an aeroservoelastic controls analysis. The finite element modeling and symmetridanti- 

symmetric free vibration analyses were performed by the STARS - Team prior to the start of 

this Master's project. However, to continue the integrated analyses for this project, this 

work was reviewed extensively. The unsteady aerodynamic calculations were performed as 

a group effort by this candidate and the STARS - Team. Specifically, unsteady 
aerodynamics analyses were performed by the STARS - Team, however, after review of the 

aerodynamic model, necessary changes were implemented, and further analyses were ran 

as a group effort. The flutter and divergence analyses included three different solution 

techniques, the k, p-k, and state-space methods. The k method analyses were performed 

on the symmetric and anti-symmetric X-29A as a group effort, with this candidate 

supervising the analyses pertaining to this project. The p-k and state-space techniques 

were performed on the symmetric and anti-symmetric cases as an individual effort. The ASE 

controls analysis was performed as a group effort. 

The tasks performed on the OWRA included conversion of a NASTRAN finite element 

code to STARS code, finite element modeling, and free vibration analyses. The conversion 
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of the finite element model was performed as a group task. Specifically, this candidate 

supervised the development of the Fortran code for the conversion program, and the 

conversion of the finite element code, itself. The finite element modeling, Le., the attempt 

to reduce the bandwidth, and the checking of the validity of the model was performed as an 

individual task by this candidate. Also, the free vibration analyses were performed as an 

individual task, however, debugging of the STARS code was done as a group effort. 

Thus, this candidate has applied both extensive technical and supervisory skills on this 

project. The conclusions and recommendations reached as a result of the work described 

above are given below for the X-29A and the OWRA. 

6.2 X-29A Conclusions 

The exhaustive analyses and flight test results compiled on the X-29A has provided the 

opportunity to compare the results of the STARS integrated analytical program. In this 

report, comparisons of the STARS free vibration analyses, flutter/divergence analyses, and 

aeroservoelastic control analyses were made to existing verified tests or analyses. The 

conclusions and recommendations are listed below. 

1) The STARS symmetric and anti-symmetric free vibration analyses showed good 
correlation to the Grumman Aerospace Corporation (GAC) results, and to the ground 

vibration survey. The STARS and GAC analyses, however, did not identify the noseboom 
(NB) mode at 20.5 Hz since neither finite element model included this structure. 

2) With good correlation of eigenvalues and eigenvectors to the GVS, unsteady 
aerodynamic calculations were performed using a doublet lattice technique. Utilizing the 

calculated force, stiffness, and mass matrices, flutter and divergence analyses were then 

performed for the symmetric and anti-symmetric cases via the k, p-k, and state-space 

techniques. 

3) The symmetric X-29A flutter and divergence results showed good correlation of the 

state-space and p-k techniques to the k-method. The p-k and k methods displayed 
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damping approximately of the same magnitude. The state-space method damping term was 

generally somewhat different than the k and p-k method, which is attributable to the fact that 

the proportional term of g, cdp (real part over the imaginary part of the eigenvalue solution) is 

plotted for the state-space method. 

4) The anti-symmetric flutter and divergence analyses showed good correlation between 
the state-space and k methods. The p-k method, however, varied significantly to the k 

method, probably indicating some numerical instability associated with the aerodynamic 

model. The inclusion of the rigid body modes in the anti-symmetric case indicates that the 

lower frequency flexible modes are affected, as illustrated by both the v-g plots and the root 

locus plots. 

5) The root locus plots indicate the same pattern of the modes for all flutterldivergence 

methods. The state-space and p-k methods, however, differ from the k-method in that the 

divergent modes exhibit non-oscillatory motion prior to divergence. 

6) In the aeroservoelastic controls analyses, good correlation is shown for both the open 
and closed loop analog reversion mode between the STARS analytical results and the 

SAEL results, which uses test data from the GVS. The SAEL results however do indicate 

more response at the airframe's natural frequencies. Particularly, in the open loop analysis 

excluding the notch filters, the STARS results do not indicate any instabilities, unlike the 

SAEL results. The instability occurring at the noseboom frequency does not occur in the 
STARS analyses since this structure was not included in the FEM. 

7) The STARS and SAEL results both meet the criteria of gain margins of k3 dB and 
phase margins of 22.5 deg for all system modes below the first structural mode. Also, no 

gain crossovers occur at airframe resonances, and show a gain margin of at least 6 dB. 

8) Good correlation of STARS analytical closed loop damping and frequency results were 

shown to flight test results performed at NASA. 
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6.3 Proposed Future Research for the X-29A 

Based on the above conclusions and general findings while working on this project, 

the following recommendations are made concerning the FSW X-29A. 

1) Further analyses should be run to determine if there is a theoretical factor relating the 

damping term of the state-space analyses ( a / p  ) to the k and p-k analyses (9). 

2) The anti-symmetric X-29A p-k flutter analysis should be investigated further to 

determine the cause of the varying results (as compared to the k and state-space methods). 

3) The STARS X-29A FEM should be updated to include the noseboom structure. Free 

vibration analyses, followed by a complete ASE analysis should be conducted to match the 

instability indicated by the SAEL open loop analyses. 

6.4 OWRA Conclusions 

The analyses performed on the Oblique Wing Research Aircraft for this project 

included the conversion of a complete NASTRAN finite element model to STARS format. 

This also included minor checks of the validity of the FEM. A free vibration analysis of the 

complete FEM was performed on STARS using the Sturm sequence and inverse iteration 

method. The conclusions of this work are given below. 

1) A 1,380 node finite element model was used in the free vibration analysis of the 
Oblique Wing Research Aircraft. This resulted in a 8,262 degrees of freedom eigenvalue 

problem. The complete FEM was used to eliminate approximation errors of reduction 

schemes. This approach seemed feasible since the highly efficient STARS was being 

used. 
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